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Abstract

Social segregation in cities, spanning racial, residential, and
income dimensions, is becoming increasingly diverse and
severe. As urban spaces and social dynamics grow more
complex, residents experience varying levels of segregation,
which, if left unaddressed, could exacerbate crime rates, fuel
social tensions, and lead to other societal challenges. Effec-
tively addressing these issues requires a comprehensive anal-
ysis of the underlying structures of urban spaces and resident
interactions. While previous studies have primarily focused
on surface-level indicators of segregation, they often fail to
explore the complexity of urban structure and mobility dy-
namics, leaving gaps in understanding modern segregation
patterns. To fill this gap, we propose the Motif-Enhanced
Graph Prototype Learning (MotifGPL) framework, offer-
ing a novel approach to studying urban segregation. The
framework consists of three key modules: prototype-based
graph structure extraction, motif distribution discovery, and
urban graph reconstruction. Specifically, we use prototype-
based learning to extract key urban graph prototypes from
both spatial and origin-destination graphs, incorporating at-
tributes such as points of interest, street images, and flow in-
dices. The motif distribution discovery module enhances in-
terpretability by matching each prototype to similar motifs,
which represent simplified graph structures that reflect local
patterns. These motifs are then used to guide the reconstruc-
tion of urban graphs, enabling a more detailed exploration of
spatial structures and mobility patterns. By identifying crit-
ical motifs influencing urban segregation, MotifGPL offers
insights to guide the design of urban environments that can
help reduce segregation. Experimental results demonstrate
that Motif GPL effectively uncovers these key motifs and pro-
vides actionable insights for mitigating segregation.

Code — https://github.com/tengfeihe/MotifGPL

Introduction

Segregation refers to the differentiation of individuals from
different population groups in either spatial or social dimen-
sions, a phenomenon influenced by complex social contexts
of environments (Oka and Wong 2019). Residential segre-
gation is a common phenomenon in global urban develop-
ment. Previous studies have suggested a strong connection
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between residential segregation and issues such as dispari-
ties in educational distribution (Quillian 2014; Owens and
Rich 2023), unequal employment opportunities (Bursell and
Bygren 2023), and the uneven allocation of public infras-
tructure, including healthcare services (White, Haas, and
Williams 2012; Seewaldt and Winn 2023). These imbal-
ances caused by residential segregation can exacerbate ten-
sions between residents, potentially leading to collective
conflicts and regional unrest.

As urbanization advances, the growing complexity and di-
versity of urban areas are expanding social segregation be-
yond residential areas, leading to new forms of separation in
social and economic realms (Lens and Monkkonen 2016).
Currently, income segregation is emerging as a significant
issue in metropolises, restricting interactions among differ-
ent groups. As Florida (2017) points out, rising income seg-
regation strengthens social boundaries, reducing interactions
between social classes and deepening societal divides. These
different forms of segregation reinforce each other, creat-
ing multi-layered segregation within cities. Without effec-
tive policy interventions, these patterns of segregation may
reinforce themselves, preventing sustainable development.
Therefore, a better understanding of social segregation and
the implementation of effective solutions are crucial for pro-
moting urban development.

To explore and understand urban social segregation, so-
ciologists have traditionally relied on static socioeconomic
data to develop comprehensive indicators reflecting seg-
regation levels. Massey and Denton (1988) initially cat-
egorized urban segregation into five primary dimensions,
which Brown and Chung (2006) later distilled into two
main dimensions: concentration-evenness and clustering-
exposure. Building on this, Kwan (2013) introduced an ad-
ditional accessibility indicator, utilizing these three metrics
to assess segregation levels. The advent of digitalization in
urban environments has enriched the datasets available for
segregation studies, offering a more dynamic perspective.
Researchers have begun employing mobility data to track
individual movement patterns within cities and to examine
spatial accessibility (Chen et al. 2018). Furthermore, Moro
et al. (2021) demonstrated that severe income segregation
can persist even in geographically proximate areas, high-
lighting the necessity of accounting for both urban spatial
configurations and mobility patterns in segregation assess-



ments.

Alongside the expansion of data types, innovative
methodologies have been incorporated into segregation re-
search. Sousa and Nicosia (2022) utilized urban network
structures to model racial segregation and employed graph
random walks to explore the spatial diversity of racial dis-
tributions. Similarly, Zhang et al. (2021) leveraged mo-
bility data and community detection algorithms to inves-
tigate income-economic segregation, analyzing movement
patterns across different socioeconomic strata. These ad-
vancements not only broaden the scope of data used but also
introduce new analytical techniques for more effectively dis-
secting complex social phenomena.

While extensive research has focused on quantifying so-
cial segregation using established metrics, these studies of-
ten lack depth in their interpretative analyses. Existing re-
search frequently limits the use of mobility and urban spa-
tial data to descriptive statistics, without exploring their po-
tential to reveal deeper insights into segregation dynamics.
Emerging technologies like deep learning are rarely applied
to the study of social segregation, primarily due to a tradi-
tional reliance on established statistical methods. This un-
derutilization of advanced technologies restricts the depth
of analysis, preventing a more thorough exploration of the
complex causes and patterns that characterize urban social
segregation. Embracing these technologies could enhance
the interpretability of segregation studies, offering deeper
insights into the underlying mechanisms and facilitating a
more comprehensive understanding of both the immediate
and systemic factors driving segregation. This approach not
only enriches the analytical landscape but also strengthens
the potential for developing more effective interventions.

To address existing challenges, we introduce a frame-
work named Motif-Enhanced Graph Prototype Learning
(MotifGPL), incorporating interpretable deep learning
methods to analyze social segregation through urban graph
structures and mobility patterns. Motif GPL consists of three
main components: prototype-based graph structure extrac-
tion, motif distribution discovery, and urban graph struc-
ture reconstruction. Our research leverages multimodal so-
cial data, which include socioeconomic indicators, popu-
lation flow indices, points of interest (POIs), street view
images, urban spatial graph, and origin-destination (OD)
graph among other diverse information sources. Specifically,
we first map this data onto nodes and edges of the urban
graph to accurately reflect urban complexity. We then em-
ploy a prototype network graph feature extractor to encode
the urban graph and learn prototype vectors that represent
various socioeconomic states, capturing the essential fea-
tures of social segregation. Through motif distribution dis-
covery techniques, we delve into the fundamental structural
patterns of the urban graph, essential for deciphering the
micro-mechanisms of social segregation.

We focus on the segregation index (Moro et al. 2021) as a
supervisory signal for our model’s learning, enhancing inter-
pretability and providing new insights into the dynamics of
segregation. This metric aids in identifying and analyzing lo-
cal structures within the urban graph and helps quantify the
extent and patterns of social segregation. Our experimental

results demonstrate that MotifGPL effectively identifies the
key factors influencing urban social segregation at the mo-
tif pattern level, offering robust support for strategies aimed
at reducing this issue. Our contributions are summarized as
follows:

* We propose a framework that analyzes social segregation
by focusing on urban structures and mobility, effectively
addressing the complexities of urban social segregation.

* Our model provides significant interpretability through
motif distribution discovery, offering a deeper under-
standing of how urban structures contribute to social seg-
regation and demonstrating a clear link between theoret-
ical models and real-world urban dynamics.

* Our model offers actionable strategies for urban planning
by utilizing motif analysis, which can effectively reduce
segregation and foster urban sustainable development.

Related Work

Social Segregation Assessment The concept of segrega-
tion, originally derived from sociological studies on racial
segregation in cities, has had a profound impact on urban
economies. For instance, segregation in the United States led
to considerable economic disparities, including a $3 billion
loss for Black residents in Chicago, alongside skewed public
resource allocation (Wang et al. 2018). As urban dynamics
have evolved, segregation now spans racial, residential, and
income dimensions, intensifying as critical urban develop-
ment challenges (Gottdiener, Hohle, and King 2019).

Addressing urban segregation requires robust quantifica-
tion of the issue. Massey and Denton (1988) initially cate-
gorized social segregation into five indicators: evenness, ex-
posure, concentration, centralization and clustering. Later,
Brown and Chung (2006) simplified these to concentration
and exposure for a more effective assessment. However,
as urban functions and mobility patterns grow increasingly
complex, these traditional indicators often fall short. Kwan
(2013) introduced accessibility as an additional dimension,
providing a more comprehensive framework to assess segre-
gation from both spatial and individual perspectives.

Existing methods typically assign a degree indicator to
each block to reflect one aspect of segregation. While these
methods provide a straightforward reflection of segregation
distribution, they fail to uncover the structural information
related to social segregation within urban spatial structures
and population mobility.

Graph Learning in Social Computing Modeling cities
as graphs that incorporate edge information, rather than
merely calculating statistical features of urban blocks, pro-
vides a richer representation of the city. Graph neural
networks (Scarselli et al. 2008) are effective for embed-
ding and predicting features in urban graph networks. Re-
searchers (Huang et al. 2023b; Jin et al. 2023; Zou et al.
2024) use graph learning to analyze urban characteristics,
dividing tasks into urban graph embedding (Li et al. 2024;
Yan et al. 2024) and graph representation learning (Li et al.
2023; Jin et al. 2023; Khoshraftar and An 2024). These tasks
facilitate aligning diverse data—from POIs (Huang et al.



2023b) to street view images (Yong and Zhou 2024) and
mobility data (Huang et al. 2023a)—into a unified feature
space, which is then used to derive node attributes for down-
stream applications such as crime rate prediction (Xu and
Zhou 2024), real estate price forecasting (Brimos et al. 2023)
and light pollution prediction(Zhang, Guo, and Zhou 2024).

Focusing on social segregation, He et al. (2020) utilized
social graph data to analyze individual mobility patterns and
observe residential segregation from a personal perspective.
Yabe et al. (2023) examined the effects of the COVID-19
pandemic on income segregation in U.S. cities using mobile
signaling and statistical data. Additionally, graph commu-
nity detection algorithms (Zhang et al. 2021; Cavallari et al.
2017) have been applied to analyze urban income segrega-
tion, offering new insights for segregation studies.

Interpretability in Social Computing In the field of
graph deep learning, there is a growing emphasis on the im-
portance of model interpretability, particularly for address-
ing complex sociological issues such as social segregation.
Understanding the reasoning behind model outputs is crucial
for effectively tackling these societal challenges. Kakkad
et al. (2023) categorizes interpretable graph models into
post-hoc (Baldassarre and Azizpour 2019; Ying et al. 2019;
Zhang et al. 2022a) and self-explainable (Zhang et al. 2022b;
Seo, Kim, and Park 2024; Chen and Ying 2024) models.
Post-hoc explanations analyze a trained model’s weights to
explain predictions, while self-explainable models integrate
information or structural constraints during training to pro-
vide inherent explanations.

Incorporating deep learning into sociological studies en-
hances the uncovering of hidden information, thus improv-
ing our understanding of intricate social issues. Fan et al.
(2023) introduced an interpretable framework that elucidates
complex interactions among urban variables to address in-
come inequality. Tang, Xia, and Huang (2023) added inter-
pretability to spatiotemporal GNNs, enhancing predictions
of traffic flow and urban space. Zhou et al. (2024) developed
an interpretable model for simulating crowd movements, of-
fering insights into urban dynamics. Similarly, Ding et al.
(2024) employed motif discovery algorithms to provide a
deeper understanding of the factors influencing tourist at-
tractions.

Although these studies provide valuable tools for explor-
ing urban issues, there is currently a lack of research that
combines motif discovery with self-explainable graph learn-
ing frameworks to tackle urban problems.

Preliminaries

In this section, we introduce the urban graph structure, re-
gional attribute data types, and the calculation of social seg-
regation indices, outlining how these elements are integrated
to effectively analyze urban social segregation.

Urban Graph Cities consist of distinct blocks, each with
unique geographical locations, traffic patterns, and commer-
cial structures, which together form the city’s fundamental
geographic structure. Within this space, the movement of
residents and the exchange of information between blocks

create an urban OD graph. Thus, a city is represented by a
graph G = (G, G,), where G, = (V, &) is the geographic
spatial graph and G, = (V,&,) denotes the residents’ OD
graph. Here, V represents the city blocks, & the set of ge-
ographic proximity edges, and &, the flow edges depicting

resident movements. The adjacency matrices A, = (afj €

{0,1}),Vi,j € [1,]| V ||| and A, = (a% € {0,1}),Vi,j €
[1,]] V ||] correspond to G, and G,,, respectively.

Region Attributes Regional attributes encompass both
the geographical and social characteristics of city blocks.
Street view data capture the geographical features of a block,
the regional pedestrian flow index highlights its importance
within the urban mobility framework, and POIs data re-
flect a block’s role in the urban functional layout. Socioeco-
nomic indicators represent the social characteristics of resi-
dents and measure the degree of social segregation. For each
block v; € V, we define XV as the street view data, X/'*
as the pedestrian flow index, XZ.P OI 45 the count of vari-
ous POIs, and Xis E as the socioeconomic indicators. The
metrics XV, XFL X POI and X5F collectively represent
these attributes for the entire block set V.

Network Motifs Network motifs are recurrent local con-
nection patterns in complex network structures, serving as
fundamental components that encapsulate the network’s ar-
chitecture. In prototype learning, each prototype p; in the
matrix P is associated with a motif pattern distribution m,,
derived from the local graph structure most similar to p;.
This distribution m, reflects the local structural information
of the node subset V; that closely resembles the prototype.

Social Segregation Index We collected aggregated so-
cioeconomic indicators for each block, including average in-
come levels, average education levels, and the average age
of residents. Following Moro et al. (2021), we used the seg-
regation index to calculate social segregation within each
block, defined as follows:

c
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where 7 is the economic distribution (e.g., income, educa-
tion, and age) and c is the dimension.

This segregation index quantifies differences in segre-
gation levels across blocks and categorizes them into two
classes based on quantiles to identify blocks with social seg-
regation, providing a foundation for analyzing how urban
networks influence segregation.
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Problem Statement

Given an urban geographic spatial graph G; = (V, ;) and
an OD graph G, = (V,&,) with their corresponding adja-
cency matrices A, and A,, and node attributes X = (X5 ||
XFL !' XPOT) we aim to use the degree of social segrega-
tion d°F¢, derived from socioeconomic indicators X%, as
a supervisory signal to learn prototypes P related to urban
social segregation and their corresponding motif distribution
M. The learning task is formalized as follows:
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Figure 1: The framework of Motif-Enhanced Graph Prototype Learning (MotifGPL).

where D = (G, G,, A, Ay, X ), g represents the number of
prototypes, and d denotes the dimension of the motif distri-
bution. F' is a function that uses data from both graphs to
compute motif distributions associated with the prototypes.
Subsequently, we will utilize the motif distributions to guide
the optimization of urban graph structures, aiming to reduce
social segregation within cities.

Methodology
Framework Overview

Figure 1 illustrates our framework for identifying local
structures associated with social segregation from spatial
and OD graphs. The model comprises three main com-
ponents: the prototype-based graph structure extraction
module, the motif distribution discovery module, and the
urban graph structure reconstruction module.

The prototype-based graph structure extraction module
involves encoding multi-attribute and graph structure infor-
mation, followed by prototype learning guided by social seg-
regation degree indicators. The motif distribution discovery
module then projects these prototypes onto the spatial and
OD graphs to identify local node structures and extract motif
distributions. Finally, the urban graph structure reconstruc-
tion module utilizes these motif distributions to optimize the
urban spatial graph structure, with the goal of alleviating so-
cial segregation in cities.

Prototype-based Graph Structure Extraction

Graph Encoder The urban spatial graph G, considers the
connectivity of urban areas based on geographical proxim-
ity. Following Tobler’s first law of geography, we use the
spatial graph to simplify inter-regional connections within
cities, focusing on links between neighboring areas within a
specified threshold. Conversely, the OD graph G,, represents
connections based on population mobility.

Our model employs two feature extractors to indepen-
dently encode G, and G, using adjacency matrices Ay and
A, and node attributes X. We utilize Graph Neural Net-
works (GNN5s) as encoders to integrate graph structural in-
formation through a multi-layer message passing mecha-
nism. The message passing formula is defined as follows:

HD = o (Dt A D HOWD) ()

where m = {s, o} specifies encoders for G; or G,. 4,, =
A, + Iy includes self-loops, f)m is the degree matrix, i 7%)
is the layer-specific weight matrix, and o typically refers to
the ReLU activation function. H(®) = X represents the ini-
tial node attributes. To fully leverage the structural informa-
tion from both graphs, we concatenate the outputs from each
layer of the GNN encoders, resulting in a node latent space
representation that blends features from both G, and G,,.

Following the encoding, the node attributes and graph
structure are transformed into a latent space representation,
denoted as H. In the prototype learning layer, we maintain
a fixed number (N,.,,) of prototypes per class, capturing
essential local structures. Similarity scores s;; between each
node’s latent representation h; and prototype p; are calcu-
lated as follows:

| b —p; 3 +1)
sij =log | ———————=— ], 4
y g@m—mﬁ+e @

where € is a small constant for numerical stability. The sim-
ilarity scores inform a fully connected layer with softmax
activation to classify nodes.

Motif Distribution Discovery

Prototype Projection Though prototype vectors are con-
tinuously optimized during training, they often lack intuitive
interpretability. To address this, we developed a module that
projects prototype vector p; onto local subgraphs G, of
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Figure 2: Network motifs employed in the study. The blue
node represents the target node, while the other nodes repre-
sent its neighbors.

nodes from category k£ within the graph G during training.
This projection enhances the interpretability of the proto-
type vectors by associating them with the local structures of
specific node categories. For a given node ¢, with the rep-
resentation /; denoting its local structure, the projection of
prototype vectors is facilitated by the following process:

pr = argmin || I; — px ||2, (%)

i€L;

Li = {fsu(G5up)i Geoup € Sub(G*) Vist.y; =k} (6)
To efficiently classify nodes in large-scale graphs, we de-
veloped a random-walk-based local structure extractor. For
each node i, this extractor generates r random walk se-
quences, each of length ¢:

sj+1 = Random(w;N(s,)), ™)

TP € R™', where ti = (s s¥,---, sF), (8)
where s; denotes the currently selected node in the random
walk, and w; represents the weight of the edge connecting
to neighbors. T represents the local graph structure of node
1. Subsequently, we use a RNN to encode this local struc-
ture into latent space, matching the prototype’s dimension,
resulting in the encoded structure /; = RNNEncoder(7%).

Motifs Detection Each prototype is aligned with the lo-
cal structure of a node within its category through proto-
typical projection, utilizing random walk sequences. These
sequences are then reconstructed into a subgraph for each
prototype, providing a subgraph representation. Building on
this, we initiate motif discovery, where motifs are defined as
statistically overrepresented substructures in networks (Milo
et al. 2002). In a real network and N random networks, a
subgraph qualifies as a motif if it meets the following condi-
tions, with a probability threshold Py;:

P((frand(Gr) > freat(Gr))) < P, )

where frcq1(Gy) is the frequency of a motif in real network
Gk, and frq4na(Gy) is the average frequency in all random
networks about G..

The main advantage of motifs is the ability to capture the
core connectivity of a network with fewer nodes and edges,

maintaining a balance between complexity and interpretabil-
ity. Too few nodes miss critical structural patterns, whereas
too many reduce motif clarity. We focus on 3-node, 4-node,
and selected 5-node motifs, as shown in Figure 2, to provide
detailed insights into urban social segregation from a struc-
tural perspective. For each subgraph G}, associated with a
prototype py, we count the frequency of the motif, forming
the motif distribution my, for the current prototype.

Urban Graph Structure Reconstruction

The motif distribution derived from prototype vectors en-
ables a thorough analysis of the spatial and mobility mech-
anisms influencing social segregation in cities. We use this
distribution to guide the reconstruction of the urban graph.
After establishing the motif distribution M, we assign the
corresponding motif distribution m; to each node, based
on its local network structure gf“b. With a reconstruction
threshold «, we incrementally adjust the adjacency matrix
A for nodes in a specific category. The steps are as follows:

m¢ « argmax Sim(Motif(G5¥?),my),  (10)
mp€eM
Ali] = (1 — aKL)A[i] + («KL) A[tar], (11)
KL = KL(m{, mg,), (12)
new 1 if Ay > B
A= {0 it Ay <6, ()

where G$? denotes the subgraph of G with node i and A[i]
denotes the i-th row of adjacency matrix. K L(-, -) signifies
the KL divergence, « represents the reconstruction weight
factor, and f3 stands for the edge creation threshold.

Optimization

During training, our objective is to understand the network
structure underlying urban social segregation, using the so-
cial segregation index d*F¢ as the ground truth. We en-
hance model’s accuracy in predicting social segregation lev-
els by minimizing the cross-entropy loss function Lcysgp.
In the prototype learning layer, we improve prototype in-
terpretability by imposing constraints that refine their abil-
ity to capture key local structures. Following Zhang et al.
(2022b), we incorporate a cluster loss L¢yst, encouraging
nodes to align more closely with their respective prototype
vectors, and a separation loss Lgp,¢, which distances nodes
from non-category prototypes. Additionally, in the motif de-
tection module, we apply an encoding loss Lg,. to ensure
the local subgraph encoder learns the optimal representation
from subgraphs to prototype vectors. In summary, the loss
functions we aim to optimize are as follows:

N C
£C7‘sEtp = % Zl z:lyzc log(gp(hzc))7 (14)
1Y . 2
Lcist = o - j:pIJI"IEHI:l’yj | gp(hi) —Pj 112, 15)
1 N
Lspre = o j:pr;légyj | gp(hi) — p; ”%v (16)
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where N denotes the number of block nodes, C' represents
the number of segregation levels, ¥ is the true label of node
i, and gp (+) is the function of prototype layer. P, represents
the set of prototype vectors belonging to the same class as y;,
p denotes the number of prototypes, fsyp is the function of
the subgraph encoder, and G, is the subgraph centered at
node i. Combining these loss functions, the overall objective
function is as follows:

L= ﬁCrsEtp + )\IEClst + )\2£Sprt + A3£Enc~ (18)

Experiments

Datasets Beijing has evolved unique residential spatial
distribution and mobility patterns during urban expansion,
making it an ideal city for studying urban social segrega-
tion. We selected Beijing as the study city and divided it into
2104 blocks based on geographical divisions. To focus on
social segregation in the urban core, we sampled 842 blocks
within a 10-kilometer radius of the city center. The dataset
includes a spatial graph G, (|| V ||= 842, || £ ||= 6132) and
an OD graph G, (|| V ||= 842, &€ ||= 36334). Each block
contains data on 21 categories of POIs, hourly pedestrian
flow indices, and 20 street view images for both summer and
winter, obtained through uniform sampling within the block
boundaries.

Baselines In the experiments, we select GNN variants
such as GCN (Kipf and Welling 2016), GAT (Velickovié
et al. 2017), and GIN (Xu et al. 2018), along with inter-
pretable models like ProtGNN (Zhang et al. 2022b) and
PGIB (Seo, Kim, and Park 2024). To better evaluate the im-
provements brought by graph prototype learning to GNN
models, we also include GAT and GIN models augmented
with the prototype framework. Through comparative analy-
ses, we assess the effectiveness of our model in accurately
predicting social segregation levels.

Experimental Settings In the social segregation levels
prediction task, we split the data into training, validation,
and test sets with proportions of 0.6, 0.2, and 0.2, respec-
tively. The social segregation index serves as the training la-
bel for the prototype network. A pre-trained ResNet50 (He
et al. 2016) is used to encode street view images, which are
then combined with POIs and flow indices to generate 256-
dimensional node attributes. These node attributes are sub-
sequently mapped into a 128-dimensional latent space us-
ing a GNN module. The learning parameters are set as fol-
lows: a learning rate of 0.001, a maximum of 3000 epochs,
and a prototype projection interval of 50 epochs. The hyper-
parameters for the objective function are Ay = 0.4, Ay =
0.2, A3 = 2. A crucial hyperparameter is the number of pro-
totype vectors per class (Nprot0), Which is set to 5 based
on preliminary experiments. These experiments show that
five prototypes optimize both efficiency and interpretability.
Using more prototypes increases training time, while fewer
prototypes reduces motif discovery. Additionally, to ensure
robustness, each experiment is repeated five times.

Segragation Index

Accuracy (1)

F1—score (1)

GCN 0.7872£0.0002  0.7854+0.0002

GAT 0.7692+0.0006  0.7686=0.0006

GIN 0.7512£0.0008  0.7508+0.0008
ProtGNN 0.7348+£0.0014  0.7384+0.0016
PGIB 0.7502£0.0010  0.7626+0.0008
GAT+Prototype  0.7896+£0.0001  0.788440.0001
GIN+Prototype  0.7644+0.0006  0.7640+0.0005
MotifGPL 0.7990-£0.0005 0.7976£0.0006

Table 1: Evaluation of social segregation classification.

Motif Dlstrlbutlon in Graph Gs Motif Dlstrlbutlon in Graph Co
Ma,2 Mg

My/w/wz

3, 1 Mg, l4
\\ /q/s 2 K /M/s 2
“Ms,1 “Ms,q
Figure 3: Motif distribution of prototypes in G5 and G,,.

Experimental Results

Social Segregation Levels Classification Task We assess
the model’s performance in predicting segregation levels.
The results in Table 1 show that: 1) Compared to GCN,
GAT, and GIN models, MotifGPL achieves the best perfor-
mance in the prediction task. Furthermore, it offers a sig-
nificant advantage in interpretability. While GNN models
like GCN, GAT, and GIN are opaque box models without
interpretability, which limits the investigation of social seg-
regation, our graph prototype learning framework captures
valuable information and improves interpretability through
low-dimensional prototype vectors. 2) Compared to GNN
interpretability methods like ProtGNN and PGIB, which are
optimized for graph classification and underperform on node
classification, our model achieves higher accuracy while
maintaining interpretability. The prototype vectors in our
model capture key factors related to social segregation, im-
prove performance on node-level tasks, and support effective
motif pattern discovery.

Motif Distribution Discovery Next, we employ graph
isomorphism algorithms to identify motif patterns of trained
prototype. Figure 3 shows the motif distribution correspond-
ing to the prototypes of Graph G and G,,, where green repre-
sents motifs of blocks with high segregation and orange in-
dicates motifs of blocks with low segregation. In the spatial
graph, motifs in high-segregation blocks are primarily found
in My 4 and M3 . These circular motifs indicate that these
blocks exhibit spatial clustering, forming enclosed commu-
nity structures. In contrast, motifs in low-segregation blocks
are concentrated in My 1, My 4, and Ms 1, with chain-like
motifs suggesting a linear spatial distribution that enhances



o B8 AEP REP UEP  Moran’s I(})

original  0.00 0.00 100.00 0.4159

G 0.8 03 140 024 99.76 0.4043
® 08 02 581 0.00 100.00 0.3751
0.8 0.1 15.05 0.00 100.00 0.3169

original  0.00 0.00 100.00 0.2410

G 08 03 1.8 032 0.9968 0.2341
° 08 02 814 0.00 100.00 0.2118
0.8 0.1 1992 0.00 100.00 0.1805

Table 2: Results of urban graph reconstruction. AEP denotes
added edge percentage, REP denotes removed edge percent-
age, and UEP denotes unchanged edge percentage.

Optimized & "

Figure 4: Comparison of reconstruction outcomes across
block segregation levels (orange indicates low segregation,
green indicates high segregation).

interaction with the urban environment. In the OD graph, the
motif distribution of blocks with varying segregation levels
is primarily concentrated in chain-like (M, ; and M3 1) and
star-like (M4 o and M5 1) patterns. Comparing the number
of motifs in My 1, high-segregation blocks contain signifi-
cantly more chain-like motifs than low-segregation blocks,
indicating that residents in high-segregation blocks endure
longer commutes. Additionally, star-like motifs in high-
segregation blocks are more complex than those in low-
segregation blocks, suggesting that residents in segregated
blocks often travel to centralized blocks for daily activi-
ties, reflecting a clear separation between living and work-
ing spaces. Based on these findings, urban planners should
consider shifting from traditional clustered housing to a lin-
ear distribution strategy when selecting sites for new afford-
able housing developments to mitigate segregation among
residents. Additionally, improving amenities around high-
segregation blocks will help residents more easily meet their
daily living and working needs.

Urban Graph Reconstruction Using the discovered mo-
tif distribution to guide the reconstruction of urban graph
structures can facilitate minor modifications to the existing
urban framework,ultimately reducing overall social segrega-
tion in the city. According to Garreton, Basauri, and Valen-
zuela (2020), we utilize Global Moran’s I to measure the
overall degree of social segregation across Beijing, as it cap-
tures spatial autocorrelation and reflects dynamic changes
in segregation patterns, unlike the static segregation index,

Segragation Index
Accuracy (1)  Fl—score (1)

Motif GPL  0.7990+0.0005 0.7976+0.0006
w/o G, 0.7776+0.0005 0.7758+0.0005
w/o G 0.72124+0.0002  0.7210+0.0002

w/o X3V 0.783440.0008  0.7814-0.0009
w/o XL 0.775240.0005  0.77344-0.0006
w/o XPOT 0.7560+0.0003  0.753440.0004

Table 3: Results of ablation study for MotifGPL.

which is unsuitable for dynamic network reconstruction.
Global Moran’s I ranges from -1 to 1, where a larger absolute
value indicates higher spatial segregation. Table 2 presents
the results of the urban graph structure reconstruction exper-
iments. Here, o and /3 represent the reconstruction weight
and edge generation threshold, respectively. The results in-
dicate that using motif distribution to guide spatial or OD
graph reconstruction reduces social segregation. At a low re-
construction level (a« = 0.8, 3 = 0.3), only minor changes
(<2.5%) to the existing urban structure are required to de-
crease social segregation. Figure 4 shows the changes in seg-
regation levels in Beijing after urban graph reconstruction.
Highlighted areas indicate that reconstruction can partially
reduce social segregation. In practice, enhancing connectiv-
ity between blocks by improving infrastructure or adding
new transportation routes is a feasible approach for urban
graph structure reconstruction. Experiments show that motif
patterns provide novel insights for guiding reconstruction.

Ablation Study We conduct ablation experiments on the
classification task, focusing on graph structures and node at-
tributes. As shown in Table 3, the results indicate that the
absence of either the spatial graph or the OD graph leads to
a decrease in performance, suggesting that the local struc-
tures of these two graphs are crucial for analyzing urban so-
cial segregation from the perspective of motif patterns. Simi-
larly, the absence of any node attribute leads to reduced per-
formance, indicating that the selected urban attribute data
reflect various aspects of segregation.

Conclusion

This paper presents a framework called Motif-Enhanced
Graph Prototype Learning (MotifGPL), which integrates
motif discovery with graph prototype learning to uncover
insights related to social segregation within urban spatial
structures and population movement patterns. We explore
motif patterns associated with social segregation, provid-
ing a new perspective for addressing segregation issues in
urban environments. Our experimental results demonstrate
that the motif patterns identified by the model have strong
interpretability in real-world scenarios. This not only pro-
vides a novel methodological approach for investigating ur-
ban segregation but also offers substantial support for urban
planning and development practices.
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